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Abstract. It is shown mathematically that there are two 
distinct ways of generalizing the concept of mass in 
Newtonian mechanics to Einstein's theory of relativity. We 
discuss the logical structure of the theory in t e m  of this. 

Zusammcnfassung. Es wird mathematisch nachgewiesen, 
daB sich das Konzept der Masse in Newtons Mechanik auf 
zwei Weisenm Einsteins RelativiliWheorie verallgemeinert 
werden kann. Die logische Struktur der Theorie wird mi1 
Hinsicht auf diese Tatsache diskutiert. 

1. Introduction 

The subject of relati&ic mass and how we teach it  
has long been a topic for debate (Brehme 1968, 
Whitaker 1976, Adler 1987, Okun 1989a, b, Rindler 
1990, Sandin 1991, Strnad 1991). A central issue is 
whether it is better to consider mass as depending 
on velocity or wbether it should be regarded as an 
invariant. Whatever one's preference, any serious 
student of relativity needs to be acquainted with 
both of the conventions used in the literature and 
so the teacher who wants to avoid confusion needs 
to have a clear understanding of the matter. Unfortu- 
nately most of the (often quite ardent) discussion 
is, in OUT opinion, overly embedded in ill-defined 
semantics, frequently at cross purposes, and cir- 
cumvents an interesting issue: why are there two 
possibilities in the first place? 

It is our goal here to answer this question-to 
explain how it i s  that the logical structure of special 
relativity permits two different types of mass. It is 
not our purpose to advocate one convention or 
another. We do though offer a few comments on 
teaching aspects of mass in relativity based on the 
insight gained We also note an intimate connection 
with the perennial issue of whether or not mass can 
be converted to energy (Baierlein 1991). 

2. Newtonian mass 

Part of the difficulty in discussing this subject stems 
from the fact that the term 'mass' in classical physics 
means many different things (Bohm 1989) such as 
inertia, gravitational mass, etc. Let us avoid all of 
this by concentrating on the mathematics and con- 
sidering the quantity m that appears in classical 

equations such as p = mu, F = ma, E = +mu' and 
others. This is something that can be measured 
and represents a property of a material body. 
Without further ado we call it the Newtonian mass 
and note that under (non-relativistic) changes of 
inertial reference frame Newtonian physics expects 
the mass, in, to remain unchanged. We can see this 
explicitly by considering the so-called Galilean 
(boost) transformations of Newtonian mechanics: 

(1) 
x'  = x + Ut 
2' = z t '=  f 

Y ' = Y  

where U is the relative speed of the two inertial 
frames, the relative motion being taken as in the x 
direction. Thus U = dx/dr changes to U' = U + U, 
and, for example, the momentum p changes to 
# = m' with nr unchanged. It is evident then that 
in Newtonian (non-relativistic) physics mass is an 
invariant. 

3. Generalizing an invariant 

The dichotomy of mass in the relativistic theory 
arises because there is more than one way in which 
a quantity which is invariant in the non-relativistic 
limit can behave. In the relativistic theory the 
Galilean transformations of equation (1) must be 
replaced by the Lorentz transformations: 

x' = r ( x  - Pcr) y' = y 
Cf' = r(cr - px) ( 2) 

z' = 2 

where y = (1 - @)-''' and p = u/c.  These reduce to 
the Galilean transformations in the limit that c 
becomes infinite. Since the Lorentz transformations 
hold for any c they incorporate the Galilean transfor- 
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mations and any quantity which is invariant under 
the Lorentz transformations, such as the spacetime 
interval (c t )2  - 9 - y2 - 2, must aIso be invariant 
under the Galilean transformations. (To verify this 
it helps to divide the spacetime interval by 2 before 
applying the Galilean transformations.) However, it 
is clear that any quantity that transforms in the same 
way as the time variable will also be invariant in the 
Galilean limit (since time is unchanged by Galilean 
transformations). Hence we have two distinct and 
mathematically acceptable ways of generalizing a 
Galilean invariant such as the Newtonian mass. 
One way is to insist that mass be a Lorentz invariant 
(i.e. a scalar) and the other is to let it transform as 
the time component of a four-vector. The latter 
possibility is often referred to as relativistic mass 
but both masses are of course relativistic in the sense 
that they are compatible with the s p i a l  theory of 
relativity. We shall refer to them as scalar mass and 
vector mass in analogy with standard terminology 
for relativistic potentials. 

The usual way of introducing a vector mass 
(i.e. what is often referred to as relativistic mass) 
in special relativity is via the formula for the 
momentum of a free particle. In Newtonian 
mechanics this is p = mv and one argues by any of 
several methods (e.g. analysis (Lewis and Tolman 
1909, Tolman 1912, 1934, Pauli 1921, Peters 1986) 
of colliding billiard balls and the requirements of 
momentum conservation, or simply by arguing 
(Eddington 1921, Taylor and Wheeler 1992) that 
mdx/dr should be replaced by mdxldr  where 
r = f/y, is the proper time) that in special relativity 
one must have instead 

P = (3) 

where ye is the Lorentz boost factor of equation (2) 
but calculated using the speed U of the particle. This 
immediately suggests defining mass in relativity as 

m' = yvm. (4) 

mL=m ( 5 )  

The rest frame value is just (taking v = 0) 

and is alled the rest mass. I t  is of course just the 
Newtonian mass. Note though that we introduce new 
notation for m' because in general it is not the same 
as the Newtonian mass but is a bold generalization of 
it. Indeed, not only ism' not equal to the Newtonian 
mass but it changes value from one inertial frame to 
another. This is a concept quite foreign to Newtonian 
physics and, as we shall see shortly, mr corresponds 
to what we have called the vector mass. 
On the other hand, scalar mass in relativity must, 

by its Lorentz invariant nature, be the same as the 
Newtonian mass and no new notation need be intro- 
duced. Proponents of scalar mass need simply carry 
along the product ym wherever proponents of vector 
mass would use m'. 

4. What about energy? 

If this were all, then the choice between the two 
would be purely a matter of taste. However one 
should consider Further the implications of gener- 
alizing the concept of momentum as in equation 
(3). In a frame moving with velocity U with respect 
to that of equation (3) the momentum is given by 
p' = mdx'/dr and using the Lorentz transforma- 
tions we obtain (noting that yu is necessarily 
constant for two inertial frames, unlike yx which 
may vary with time) 

This looks just like the Lorentz transformations of a 
space vector (equation (2)) if we introduce a new 
quantity, the time component 

of a four-vector p .  One easily checks that pa trans- 
forms as 

(Pa)' = a ( P a  - l3P.T) (8) 
just as one would expect. It remains to interpret p o ,  
Making a binomial expansion for y in the low velo- 
city limit we fmd 

in which we r e c o p  4 mv2 as the Newtonian kinetic 
energy. Clearly p c has units of energy and we may 
write 

po  = E'/c. (10) 
Note that we have written E' with a superscript r to 
emphasize that E' is not the same energy E that 
appears in Newtonian physics but rather is a gener- 
alization of it. The important new element is that 
even at rest (and in the absence even of potentials) 
the particle has a resf energy, 

E; = mc2 =mi?. (11) 
Thus, unlike p which reduces to mv in the non- 
relativistic limit E' does not reduce to the non- 
relativistic f m 3  in that same limit. Combining 
equations (IO) and (7) we obtain 

E' = y,m2 = "2. (12) 
Thus we see that the new quantities E' and m' are 
essentially the same thing, differing only by a 
dimensionality constant, c2. Put another way, in 
generalizing both energy and mass we have merely 
obtained a duplication of what has turned out to be 
the same physical quantity. Thus the equality 
expressed by equation (12) does not rank with, for 
example, Maxwell's unification of light and electro- 
magnetism. That distinction belongs to equation 
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(11) which tells us that the previously known entity, 
Newtonian mass, is to he interpreted as a form of 
energy. 

To emphasize this point consider how m' trans- 
forms under changes of inertial reference frame. We 
can of course always determine its value in the rest 
frame and then use equation (4). However, consider 
a direct transformation from one arbitrary inertial 
frame to another arbitrary inertial frame. Since 
m' = p Q / c  we immediately see that it transforms 
according to equation (8) in the form 

(13) (m')' = yu(m' - pm,) 
where, for convenience only, we have introduced 
m = p / c .  It is clear now that m' transforms as the 
time component of a four-vector, as advertized. But 
note that there is nothing profound in dividing 
equation (8) by c and just as nobody would claim 
anythiig profound in our m = p/c so we should 
avoid teaching that there is something profound in 
equation (12). What is profound is the recognition, 
expressed in equation (ll),  that we should associate 
with each body a rest energy and that energy is 
essentially its Newtonian mass. This relationship 
was unrecognized in Newtonian physics and only 
after this step has been made can we introduce E'. 

Of course there is nothing new in OUT observation 
that equation (12) is a mere tautology. What we have 
succeeded in showing is that this is a fundamental 
issue associated with the logical structure of the 
theory and inextricably connected with the very 
mathematical freedom that permits us to use either 
a scalar or vector mass. However, unless logical 
leanness is one's sole objective, this does not mean 
that a vector mass has no useful role. Many hooks 
on relativity state that with an appropriate choice 
of units one could measure time in metres. As 
elegant as the idea may seem we persist in measuring 
time in seconds. Likewise one may continue to use 
both E' and m'. What we must not do though is 
confuse a choice of units with physics. 

Regardless of the choice of mass made one should 
take great care in teaching the subject that one does 
not mislead. We have already discussed a common 
fallacy associated with equation (12). Another exam- 
ple would he the famous experiments (Kaufmann 
1901, Bucherer 1909) on the motion of a charged 
particle in a uniform magnetic field. The formula 
for the radius of the orhit 

is valid for both relativistic and non-relativistic 
motion. Measurements of R versus velocity, U, are 
frequently cited as evidence for an increase of mass 
with velocity. Actually, all the experiments show is 
that p is not linearly dependent on v, for U approach- 
ing c. One may, if one wishes, interpret this as due to 
an increase in m'; or one may simply interpret it as 
evidence for they  factor in equation (3). 

A related issue is whether mass can be converted 
to energy or not. It is surprising to see how much 
debate has occurred on this point without a clear 
appreciation that the answer depends on which 
version of relativistic mass one is using and whether 
one is talking about the system as a whole or its 
parts. (We set aside the semantics issue (Eke  1988, 
Beynon 1994) of whether energy is 'converted' or 
'transferred'.) Consider a neutral pion at rest decay- 
ing into two photons. Initially both schools of 
thought agree that the pion has a mass of approxi- 
mately 140 MeV/2. Conservation of energy dictates 
that both before and after decay the system has an 
energy of 140MeV. Initially this energy is in the 
form of rest energy or mass of the pion. After decay 
it is in the form of radiation. This is where the debate 
starts. The scalar mass proponents consider the 
photons to be massless and are horrified at any talk 
of photon mass (even though they are quite prepared 
to talk of the mass of this particular two photon 
system taken as a whole, since it has zero momen- 
tum in the pion rest frame). Thus mass has been 
converted to energy according to this school of 
thought and moreover it  is energy that can be made 
to do work, e.g. by having the photons impinge on 
a pair of solar cells. (This further negates somewhat 
the extraneous argument that since the system as a 
whole still has mass-the same mass as before- 
there has been no conversion of mass to energy. At 
some stage if makes little sense to continue thinking 
of a single system.) Thus mass is to be regarded as 
a form of energy and it can be converted to other 
forms in the same sense that we speak of potential 
energy being converted to kinetic energy (which also 
only occurs within a system). On the other hand, 
proponents of vector mass are quite happy to say 
that each photon has a mass of 70MeV/c2 and so 
mass has not been converted to energy; both mass 
and energy are equivalent concepts and conversion 
of one to the other is merely a mathematical 
operation devoid of physical meaning. What really 
matters is that one is consistent and so the teacher 
is urged not to carelessly adopt the catch phrases of 
one school when they are teaching the curriculum 
of the other. 

5. Specious arguments 

It is not OUT goal here to consider the merits of the 
many various arguments that have been put forward 
for preferring one type of mass over another. We 
would though like to warn against unsophisticated 
arguments. One example is the frequent claim that 
in relativity, the centre of mass generalizes to 

and so it is better to use vector mass, as then equation 
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(15) is of the Same form as the non-relativistic result. 
However, such remarks ignore that the concept of 
centre of mass is inherently non-relativistic and that 
there are many possible generalizations (Pryce 
1948). The above definition, while satisfactory for 
some purposes, has the undesirable property that it 
is not independent of reference frame. Furthermore 
the components of x, do not commute with each 
other (i.e. their Poisson brackets are non-zero in 
classical mechanics (Pryce 1948)) so this definition 
poses diBculties in quantum mechanics (cf Newton 
and Wigner 1949). Similar weaknesses can be found 
in other arguments. 

6. Other generalizations? 

One final point is worth making concerning the 
possible relativistic generalizations of mass. We 
introduced above the four-vector (m‘,m) for the 
sake of argument. In the rest frame it reduces to 
the Galilean four-vector (m;,O). This is not a single 
number like the Newtonian mass and so we do not 
regard our relativistic four-vector as a generalization 
of mass. Only scalars or components will do. 
Consider now the generalization of Newton’s second 
law for a particular offixed Newtonian mass. One 
finds that 

F =  M a  (16) 
where M = [mj] i!, in general, a non-diagonal matrix. 
(The form of M IS entirely analogous to that for the 
moment of inertia I for an object being rotated about 
other than one of its principal axes.) M has eigenva- 
lues 7.m (twice) and r:m, the so-called transverse 
and longitudinal masses. Even though M becomes 
diagonal in the Galilean limit it remains a matrix 
and so we prefer to consider equation (16) as a gener- 
alization of Newton’s law rather than M as a general- 
ization of mass. (Indeed, introducing the 
(Minkowski) 4-fOSe and 4-acceleration (see, for 
example, Brehme 1968) allows one to write this law 

as F” = dp’/dr = mAp without any modification 
at all of the mass.) 

7. Conclusions 

Thus we conclude by noting that in answering the 
elementary question of why two different masses are 
allowed in relativity, one obtains a clearer picture of 
the subject-, picture that is rooted in mathematics 
and logic rather than semantics and opinion. 
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